
Astronomical Data Analysis Software and Systems X
ASP Conference Series, Vol. 238, 2001
F. R. Harnden Jr., F. A. Primini, and H. E. Payne, eds.

A System for Low-Cost Access to Very Large Catalogs

K. Kalpakis1, M. Riggs1, M. Pasad1, V. Puttagunta1

Computer Science & Electrical Engineering Department, University of
Maryland Baltimore County, Baltimore, MD 21250

J. Behnke

NASA Goddard Space Flight Center, Greenbelt, MD 20771

Abstract. Many new and some old astronomical catalogs contain data
for very large numbers of objects. To conduct their studies, researchers
must have rapid access to those catalogs. At the same time, the monetary
cost of achieving fast access should not come at the expense of resources
that would be better used to support the actual scientific studies. We
demonstrate how to achieve fast access to data on a low cost desktop
for a very large catalog using the Informix Object-Relational database
system. We report on experimental results from the development of a so-
lution for efficiently indexing the USNO-A2.0 catalog, which has approx-
imately 500 million objects. The solution offers significant performance
improvements over some existing methods. We also describe an extension
of Informix that enables users to apply their IDL scripts to data stored
in Informix using SQL. This extension brings the powerful data-analysis
and visualization capabilities of IDL within Informix.

1. Introduction

Several astronomical catalogs, such as Tycho-2 and GSC-I, contain data for
very large numbers of (mostly static) stellar objects. In this study, we focus on
the USNO-A2.0 catalog. USNO-A2.0 contains 526,280,881 stars, listing Right
Ascension, Declination (J2000, epoch of the mean of the blue and red plate),
and blue and red magnitude for each star.

While those data can be made available to public and astronomical com-
munities all over the world via the WWW, there are several problems to be
dealt with because of their sheer bulk. To conduct any kind of research on such
datasets, researchers must be provided with rapid access mechanism(s). At the
same time, costs of achieving fast access should not come at the expense of re-
sources that could be better used to support the actual scientific studies. Low
cost solutions that achieve efficient and effective storage management and rapid
access to (query processing of) such large catalogs is of vital importance to the
research community.

1Supported in part by NASA under contract number NAS5-32337 and cooperative agreement
NCC5-315.

133

c© Copyright 2001 Astronomical Society of the Pacific. All rights reserved.

134 Kalpakis, Riggs, Pasad, Puttagunta, and Behnke

We demonstrate how to achieve fast access to data on a low cost desk-
top for a very large catalog using the Informix Dynamic Server, an extensible
Object-Relational database system (ORDBMS). Further, we illustrate how to
enhance the functionality of the system by extending the ORDBMS with a
statistical/scientific-computing package, IDL.

2. System Summary Description

In designing our system, we wanted to ensure that the following types of spatial
queries could be processed efficiently without a significant hardware cost:

Spatial Window Find all stars within a user-defined bounding rectangle,

Spatial OR-Window Find all stars within at least one of two user-defined
bounding rectangles,

Spatial Multi-Join (catalog correlations)

Spatial Chain-Join Find all stars in a “chain-joined” sequence of cata-
logs (join catalog A with B, and B with C)

Spatial Star-Join Find all stars in a “star-joined” sequence of catalogs
(join catalog A with B, and A with C)

Spatial Self-Join (catalog mining) Find all stars that are within a specified
box centered on each star.

The spatial window and spatial multi-join queries are very critical and users
expect them to be processed online (e.g., response times in the order of couple
of seconds). Spatial self-joins over large spatial datasets usually require a very
large computation time and we do not consider them for online processing at
this time.

Hardware and System Software We used is a PC with an AMD Duron
650Mhz processor on a FIC model AZ11 motherboard with an IDE ATA-66 and
an Ultra/ATA-100 controller, 256MB of PC100 RAM, and two IBM Ultra/100
7200rpm IDE disks (model DTLA307045). The cost of our hardware platform
is well below $2,000. The machine is running the Linux Mandrake version 7.0
Operating system, with the updated Linux Kernel version 2.4.0-test4, and is
also running the Informix Dynamic Server 2000 version 9.20 UC-1, configured
with our custom datablade (which we call SimpleShape, and custom data loading
software.

Custom Datablade SimpleShape provides a 16-byte opaque User Defined
Type (UDT) storing 4 small floats, full R-tree index support including bottom-
up index building, and full B-tree index support based on 2nd order Hilbert
curves. It defines two other UDTs with appropriate I/O functions and construc-
tors: the SimplePoint to store the coordinates of 2-D points, and the SimpleBox
to store the lower left and upper right corner points of a rectangle. Each star

A System for Low-Cost Access to Very Large Catalogs 135

in the USNO-A2.0 catalog comes packaged as three integers: RA (right ascen-
sion), DEC (declination), and MAG (a coding for the field, and the read and
blue magnitudes). We create a table with schema (coordinates SimplePoint,
magnitude Integer) to store the catalog. The data are stored in the database
in their original (compressed) format, while user-defined functions convert them
into more readily usable values. The RA and DEC fields are stored in a Simple-
Point value. To further simplify access to the data, we define additional utility
User Defined Functions (UDFs). An example SQL spatial window query is:

SELECT Ra(coords), Dec(coords), Red(mag), Blue(mag), Field(mag)
FROM catalog
WHERE Within(coords, monetbox(-3.22, 22.45, 1.23, 22.78));

Custom Loader Due to a bug in the regular table load command for the PC
platform, and the lack of an Infomix high performance loader for Linux, and in
order to avoid time-consuming string conversions during loading, we developed
a custom high-performance loader. Our loader uese the Virtual Table Interface
(VTI) of Informix which maps a binary file into a database table. An example
of its use is:

CREATE TABLE monet(ra INT, dec INT, mag INT)
USING vti_load(file=’/tmp/zone0000.cat’);

IDL Extension for the Informix Server To enable quick prototyping of
powerful data-mining applications we also developed an extension to Informix
that enables users to apply their IDL scripts to data stored in the database. The
IDL extension allows users to tap the data analysis and visualization capabilities
of IDL through Informix and SQL. Our implementation is based on UDFs and
the RPC mechanism. We define two UDFs, the idl exec that evaluates a user
provided IDL script for each qualifying tuple, and the idl agg which evaluates
an aggregation defined via three IDL scripts over groups of tuples specified by
standard SQL expressions. We also define utility and casting UDFs to access
data returned by IDL and to pass data to IDL from the database server. For
example, the following SQL computes three cluster centers of an m×n array of
data stored in a database table using the IDL CLUST WTS function, and then
returns them as a virtual table of cluster centers:

SELECT toList(idl_agg(ROW(ra,dec),
ROW(‘‘count=-1’’, ‘‘count=count+1 & if count eq 0 then
y=[$ 1, $ 2] else y = [[y]], [$ 1, $ 2]]’’,
‘‘w=CLUST_WTS(y, N_CLUSTERS=3); $ RETURN w’’))) ::
list(ROW(x float, b float) NOT NULL) FROM monet;

3. Experiments

We compared the performance of our SimpleShape datablade and customized
loader with that for two other datablades for Informix, the Geodetic and the
Shapes2 datablades, and also with the performance of a traditional relational
database (e.g., no user-defined indexes, no first-class citizen UDTs and UDFs,

136 Kalpakis, Riggs, Pasad, Puttagunta, and Behnke

and no user-defined loaders). We created four database schema, Relational,
Geodetic, Shapes2, and SimpleShape, to store USNO-A2.0 data. The experi-
ments for the SimpleShape schema were conducted on the PC platform described
earlier, while the others were conducted on a Sun UltraSparc 60 with 512MB
of RAM and two 8GB and two 4GB SCSI disks. In all the experiments, we
used random query windows of size 0.0666 × 0.0666 decimal degrees. We can
see from Table 1 that the SimpleShape datablade and custom loader reduced
the loading and indexing times with respect to the other two datablades by
more than a factor of five, while reducing the amount of disk space used by
more than a factor of three. Further, they were both substantially better than
the traditional relational approaches in terms of loading and indexing spatial
data. Moreover, as we can see from Table 2, our custom datablade reduced
the number of page reads for spatial window and multi-join queries substan-
tially over the traditional relational approach, and by more than a factor of two
with respect to the Geodetic and Shapes2 datablades. For Spatial self-joins, the
SimpleShape is dramatically better than the Geodetic and Shapes2 datablades,
while is competitive with relational approaches (with respect to page reads; the
SimpleShape gives substantially better performance on response time and page
reads over relational methods as the number of stars increases). For more de-
tailed experimental results and analysis please refer to (Kalpakis et al. 2000) or
see http://www.csee.umbc.edu/~kalpakis/monet for updated information.

Table 1. Loading and Indexing All 526M USNO-A2.0 Stars.

Schema Loading Timea Indexing Timea Table Size Index Size
B-tree R-tree B-tree R-tree

Relationalb 3 days (46 secs) 6 days 13GB 56GB
Geodeticb 14 days (234 secs) 90 days 25 days (448 secs) 190GB 66GB 104GB
Shapesb 10 days (162 secs) 57 days 15 days (256 secs) 140GB 86GB 77GB
SimpleShape 1 day (27 secs) 1 day (8 secs) 15GB 14GB 20GB

aThe times in parentheses are measurements for 100K stars.

bEstimate for 526M stars based on regression from measurements for up to 140K stars.

Table 2. Performance for Various Queries and Schemas for 60K Stars.

Number of Page Reads Elapsed Time
Query Relational Geodetic Shapes2 SimpleShape SimpleShape

Spatial OR-window 22 35 44 14 0.163 secs
Spatial Self-Join 4440 1005023 60443 6775 3072.000 secs
2-Chain Spatial Join 23 49 87 19 2.377 secs
3-Star Spatial Join 24 50 43 12 9.532 secs

References

Kalpakis, K., Behnke, J., Pasad, M., & Riggs, M. 2000, Performance of Spatial
Queries in Object-Relational Database Systems, NASA/CESDIS Techni-
cal Report TR-00-226.

