

Solar System data access and analysis with AstroGrid

Silvia Dalla

School of Physics & Astronomy, University of Manchester, UK

UNIVERSITY OF

Solar System datasets

- From solar images to time series data
- Sun, planets, solar wind, near Earth space environment, ...

Objectives

- Facilitate data retrieval and analysis across traditional Solar System 'boundaries'. See: HelioScope
- Make available easy-to-use science services. Eg: Solar Movie Maker application.
- Provide a framework for making models and applications available to the community. Feed real data as input to models.
- Allow users to develop their own science workflows (multi-instrument, large dataset work).

Data discovery: HelioScope

- Solar system is highly variable in time – time range query
- Solar data from Virtual Solar
 Observatory
 + Space
 Physics data
 from NASA
 CDAW

Solar image visualisation with Aladin

Topcat time series visualisation

- Topcat stackplots
- Automatic conversion of ISO8601 strings to numeric

Solar Movie Maker

- Ready made workflow that retrieves solar images and combines them into a movie
- Based on capability to send an ADQL query to database of solar observations (via AstroGrid DSA)+ run movie maker CEA application

Inputs				
Name	Value	Ref?	Rep?	Del?
Instrument Name	eit			
Start time for movie	2002-07-28T01:00:00.000			
ena time for movie	2002-07-28106:00:00.000			
Outputs: none for t Name	his tool Value	Ref?	Rep?	Del7
Outputs: none for t Name	his tool Value	Ref?	Rep?	Del?
Outputs: none for t Name	his tool Value	Ref?	Rep?	Del?
Outputs: none for t Name	his tool Value	Ref?	Rep?	Del?
Outputs: none for t Name	his tool Value	Ref?	Rep?	Del?
Outputs: none for t Name	his tool Value	Ref?	Rep?	Del?

Output

CTIP model

🗙 -н Т	emplate Chooser			- ×
?	Choose a template workflow CTIP model - mode A : Run	w i the Coupled Thermo OK	sphere lonosphere Plasmasp Cancel	ohere (CTIP) model, mode A. 💌

- CTIP (Coupled Thermosphere Ionosphere Plasmasphere) model, Atmospheric Physics Lab, UCL
- Data retrieved from database query is passed as input to the model
- AstroGrid as the means by which model is made available to community
- Output files returned in user's VOSpace

	0
」 ┗ ┉ ཕ ཕ Ⴞ ▤ ┽ ቩ ♥ ☆ ¥	
→ home	CTIP_A_330_170_4m_MMRO
votable	CTIP_A_330_170_4m_VNZ
Ð- 🙆 workflow	CTIP_A_330_170_4m_MMRO2
e query	CTIP_A_330_170_4m_Ne
+ Data	ETIP_A_330_170_4m_VNY
ctip_run	CTIP_A_330_170_4m_HT
	CTIP_A_330_170_4m_MMRN2
	CTIP_A_330_170_4m_MMM
	CTIP_A_330_170_4m_VNX
	CTIP_A_330_170_4m_TN
	ETIP_A_330_170_4m_LOG
	CTIP_A_330_170_4p_MMR0
	CTIP_A_330_170_4p_VNZ
	CTIP_A_330_170_4p_MMRO2
	CTIP_A_330_170_4p_Ne
	CTIP_A_330_170_4p_VNY
. •	ETIP_A_330_170_4p_HT
	CTIP_A_330_170_4p_MMRN2
1 Properties	CTIP_A_330_170_4p_MMM
ctin run	CTIP_A_330_170_4p_VNX
cop_con	CTIP_A_330_170_4p_TN
Created	CTIP_A_330_170_4p_LOG
Modified	📄 CTIP_A_330_170_MMRO
26-Oct-2005 11:28:45	CTIP_A_330_170_VNZ
Node Ivorn	CTIP_A_330_170_MMRO2
ivo://uk.ac.ie.star/filemanager#node-6 370	CTIP_A_330_170_Ne
Children	CTIP_A_330_170_VNY
45	CTIP_A_330_170_HT
	CTIP_A_330_170_MMRN2
	CTIP_A_330_170_MMM
୫୦° Advanced ୪	CTIP_A_330_170_VNX
	CTIP_A_330_170_TN
	CTIP_A_330_170_LOG
	CTIP_A_82_120_MMRO
	CTIP_A_82_120_VNZ
	CTIP_A_82_120_MMRO2
	CTIP_A_82_120_Ne
	CTIP & 82 120 VNY

Solar events

- A variety of events, eg solar flares, coronal mass ejections, filament eruptions etc
- Need to follow up initial solar event observations – IVOA VOEvent
- In addition: need to retrieve data from archives by event
- Time-cross matching of events observed by several instrument

Solar flare

Cross matching on time

 1D cross matching either for time instants or intervals

Conclusions

- Several VO tools are being developed for accessing and analysing Solar System data
- Definition of standards friendly to solar system data, eg data access protocols that allow specification of the coordinate system, etc
- Interaction with Astronomy community very positive – where possible use common tools and standards
- Overlap with time-domain work within Astronomy